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First-order Jahn-Teller reduction factors for trigonal
complexes
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Physics Department, The University, Nottingham NG7 2RD, UK

Received 25 February 1991

Abstract. First-order Jahn-Teller reduction factors for strongly coupled orbital triplet sys-
tems within trigonal complexes are evaluated. The calculations are based on the model
recently proposed by the present authors for such a complex. Detailed results are presented
for the reduction factors which correspond to those of T & e and T & tp Jahn-Teller systems
in cubic symmetry. It is found that the new factors corresponding to T ® e are virtually
unchanged from their cubic counterparts. However, some of the factors derived from the
T ® t,system are changed significantly. The most important change would appear to be that
some of the factors remain finite in the strong-coupling limit in contrast to the cubic system
where the corresponding factors are completely quenched.

1. Introduction

There are many examples known where, on doping a crystal intentionally with impurity
ions, the ions do not enter the lattice as simple, isolated, substitutional ions but instead
enter the lattice as part of a complex. This situation occurs frequently in the III-V
semiconductors such as GaAs, GaP and InP (e.g. Clerjaud 1985). In many such cases,
the ion in the complex is very strongly coupled to the vibrations of its surroundings,
which therefore complicates any interpretation of the properties of that system. There
are also numerous examples of other physical systems (e.g. spinels, Al,O3) and mol-
ecular crystals containing ions in trigonally distorted environments and complexes.
The original motivation for this detailed study of trigonal complexes arose from the
need to understand the very complicated optical absorption and photoluminescence
spectra observed in various chromium-doped GaAs samples. (This system was tech-
nologically important because of the semi-insulating character of the samples produced.)
Lack of adequate models caused much confusion in understanding these spectra. The
first complex to be clearly identified in this system was Cr?*-V ,, (Fujiwara et af 1982,
Skolnick et al 1982), in which one of the Assites surrounding the Cr* ion is vacant. One
of the current authors was involved in the detailed modeiling of this complex (e.g. Barrau
et al 1983, Austen et al 1984, Bates and Brugel 1987, Brugel and Bates 1987), but by
treating the vacancy as producing a static trigonal field at the Cr?* site. Also, Deveaud
et al (1984) suggested that Cr?*—Te complexes were formed in GaAs co-doped with Cr
and Te. The same complex was also studied by Fujiwara et a/ (1985), and modelling was
undertaken by Simpson er af (1988). Again, the effect of the Te ion substituting for one
of the As ligands was treated by a static trigonal field. Other complexes of Cr in GaAs
were subsequently observed, namely Cr—V 4.~ (Fujiwara et af 1986a, b, ¢) and Cr—Se
(Fujiwara er al 1986a).
+ Now at: British Aerospace, Sowerby Research Centre, Gold Course Lane, Filton, Bristol BS12 7QwW, UK.
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More recently, there is interest in the recharging mechanisms involving titanium
(Tebbal er al 1990) and nickel ions (Erramli et a/ 1991) in various I1I-V semiconductors.
In many of these systems, it is thought that complexes between the magnetic impurity
ion and a non-magnetic impurity are formed and could have an important role to play
on fixing the equilibrium arrangement in the crystal. Again, it is necessary to have an
appropriate model on which these ideas can be tested.

In a recent paper, Simpson et af (1990, to be referred to as I) set up and described a
model that is generally applicable to strongly coupled orbital triplet ions forming part
of a trigonal complex. (By making appropriate changes, the model could be modified
readily to apply to octahedral systems as well.) The model in I was based on an initial
unitary transformation followed by an energy minimization procedure described pre-
viously for cubic symmetry by Bates et a! (1987), Dunn (1988) and Dunn and Bates
(1989). From the mode], expressions were obtained for the coordinates of the 13 minima
in the potential energy surface, the corresponding eigenstates and their energies. The
relationship with the minima for a regular tetrahedron was also discussed.

In order to model the magnetic and optical properties of real complexes, it is
necessary to derive an accurate effective Hamiltonian. This means that the associated
reduction factors must be calculated. The aim of this paper is to use the model described
in T and derive expressions for the first-order reduction factors associated with those
seven wells (of tetragonal and trigonal symmetry) which would be associated with the
T®eand T ® t, Jaho-Teller (31) systems if the symmetry were increased to cubic. The
e modes (g and (, of the complex are the same as in the regular tetrahedron. Two types
of ‘cubic’ t; modes are considered, namely those describing radjal displacements (2,
Qs, Q¢) and those producing transverse displacements (@5, Og, Q). The two types of
t, modes will be considered one at a time. As the actual symmetry is trigonal, it is
necessary to define several reduction factors. The orbital states T, and T, each split into
two in trigonal symmetry, namely (A, + E) and (A, + E) respectively, while the t,
vibrations divide into those of A, and those of E symmetry. Each combination of state
and mode of vibration has its own reduction factor, which is generaily different from
other factors. Also included are couplings between the split orbital states.

2. Mathematical background for a tetrahedral complex

The trigonal complex consists of a central ion surrounded by four ligands i (i = 1-4),
one of which (i = 1) is different from the other three in that its charge 4, = (1 + 8)g
instead of ¢ and it is at a distance d; = (1 + o)d from the origin instead of 4. Thus its
different charge and/or relative position generates a trigonal distortion in the complex,
which is used to define the [111] axis for the cluster. Neglecting quadratic couplings
(which are relatively unimportant except for ‘cubic’ T® (e + t,) IT systems, which are
not being considered here), the total Hamiltonian for an orbital triplet ion coupled to
the e and one of the t, modes of the cluster is (I, equations (3.1), (3.7), (3.9))

#H=Hin + Hoip + ATy, (2.1
where
Ko = 2 Kjri(b} + b)) j=0,64,5,60rj=0,£7,8,9
i (2.2)
W = 2 heo (b} b; + 1) ARy = 36 2 K;R;(b} +b;).
i §

In the above, ¥, is the Hamiltonian for the linear ion-lattice coupling for the regular
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tetrahedral cluster, A, is the additional contribution to the ion-lattice coupling from
the trigonal asymmetry and #.,;, is the Hamiltonian for the vibrations of the cluster. All
Hamiltonians are written in terms of second quantized operators; for the orbitals these
operators are ¢,, ¢, (n = 1-3) and for the oscillations they are written as by, b;. Com-
binations 7; of the orbital operators are used in the above such that ry, etc., is given by

rg =cfey +crcy — 2cics. (2.3)

The R; operators are trigonal combinations of the 7; as given in I, equation (3.15). The
K; are scaled coupling constants such that:

K9=K£=KE K4=K5=K6=KT K7=K8=K9=K2 (2.4)

while the oscillator frequencies w; are such that wy = w, = wg, W4 = ws = we = wrand
W= Wg= Wy = Ws.
The procedure adopted in I was to apply a unitary transformation (equation (4.1))

U= exp(i E af P,.) (2.5)

to the Hamiltonian ¥, where « are free parameters for the trigonal cluster and P are
the momenta conjugate to ;. The transformation has the effect of displacing the origin
of each of the oscillators by —aA. For strong coupling, the largest part %, of the
transformed Hamiltonian % does not contain any coupling to excited phonon states.
The @} were obtained by minimizing %, with respect to the ', This is equivalent to
obtaining the positions of the minima in the lower potential sheet. A set of coupled
equations was obtained, which were expressed in terms of a set of new parameters 3, that
are directly related to the &;. After a considerable amount of algebra, the coordinates of
the 13 minima (k¥ = 1-13) were found and expressed in the form:

a® = (V,/huw,)nf® + 16"410) 2.6)

where V; denved directly from K;. In (2.6), ' (= 6 — 40) represents the total con-
tribution from the trigonal distortion. The values of nf® and A{* are given in table 1 of
I for both cases of a T ion coupled to one e mode and one i, mode (either of the radial
or transverse type).

From the analysis, the energies and vibronic ground states in the 13 minima were
obtained assuming that the frequencies w; are comparable in magnitude and that the
relative values of the coupling constants K and either Ky or X, could be chosen to
produce the required symmetry-type solutions. The results were given in table 2 of I and
refined in section 6 of I. For our present purposes, we will consider only those solutions
which would reproduce either tetragonal minima and trigonal minima if the trigonal
distortion wasremoved. For convenience, those states and their energies are reproduced
in table 1.

In the analysis, only the largest part %, of the transformed Hamiltonian has been
inciuded. It is known that the remaining terms are responsible for the anisotropy. This
arises from the coupling of the vibronic ground states in the minima to the excited orbital
and phonon states in the same well. This problem has been discussed by a number of
authors (e.g. Moffitt and Thorson 1957, Bersuker and Polinger 1989, Dunn and Bates
1989) but will be ignored here becaunse it is of secondary importance when compared to
the trigonal perturbation.

3. The untransformed basis and syrnmetry-adapted states

The vibronic ground state within one well consists of an orbital part multiplied by an
oscillator part with all oscillators having zero excitations. As they stand, these states are
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Table 1. The corrections to the epergies of the wells for the impurity cluster and the
corresponding orbital and ground vibronic states for the original cluster. (After Simpson et
al 1989.)

Energy correction

- Orbital  Ground vibronic
Welltype & Radial Transverse states  states

= T AT R IR e e )
Tetragonal 1-3 —46'Eg — oy, G0,y 0)1z,0
Trigonal 45 —18'Er -§0'F, a,b,c  |a.0),1b,0)|c, 0
7 -§8'Ey — d ld, 0}
Definitions 7

la) = I/ V3N+) + by - 12))  Ee = 4Ki/ho:

by = (1/V3)(+l) = by +12)  Er = 4K}/3heq
= (/VR(-+ Dy + 1) Ex =4K3/3ho,

ldy = (1/V3)(~ 1) = ) = |2)

in a transformed basis as they are centred on the well in question. As all wells must be
considered simultaneously, it is necessary to have a common basis for them all, This is
achieved by multiplying each vibronic state in each well by the unitary transformation
after substitution of the relevant value of &}. Thus the untransformed state |X§'; 0} is
derived from the transformed state | X ; 0) by the relation

IX; 0) = U 1X§9; 0)
with
& )
Up = exp(z cPw, - b;)) CH' = ~(duhaw,) 2 a. (3.1)
f
Such states are good eigenstates of the system in the infinite-coupling limit. However,
the states in the trigonal minima are not good eigenstates in finite coupling, as the

oscillator parts of states in different wells are no longer orthogonal. For these and other
reasons, it is necessary to calculate the oscillator overlaps.

$4 = OUp™ U0
= @ exp(Z DI (6 — b))10y = exp( 4 = (0f")?) (32)
! I
with
D! = it — O
i i i

for the wells k and [ using the same procedures as those used in Bates et al (1987).
For T & e systems, there is one overlap needed for & # [, namely

£ =S8g(l+ o) 3.3)
with
o = ~38'(Kg/hwe)? Sg = BXP[“G(KE/ﬁWE)Z]-

The states |x'; 0) (= Uglx; 0)), |y'; 0) and |z'; 0) are good eigenstates for all coupling
strengths for the trigonal complex as well as the regular cluster where x, y and z
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form the orbital basis states written with / = 1. However, it is necessary to take linear
combinations of these states, which are more appropriate for trigonal symmetry. Thisis
very straightforward and the required states are

o1 E) = (1/V6)(2z'30) = lx'; 0 — |5 03)
[P 1vE) = (1/V2)('; 0) ~ ' 0)) (3.4)
lp 122> = (/V3)([x'3 0 + [y73.0) + |25 0).
The labels in the kets on the left give the symmetry of that state; 0Z is the axis of
quantization along [111] with 0Y along [110].
For T ® t,systems, there are two overlaps needed for each of the radial (M = T) and
transverse modes (M = 2) on account of the differences between the wells introduced by
the trigonal perturbation. Thus we write the overlaps between the oscillators in the pairs

of wells (a, b), (a, ¢) and (b, c) as S}, (see table 1 for definitions of a, b, etc.) and
between the pairs of wells (g, d), (b, d) and (c, d) as S)y4, where

Shab = Sl + Fppp) Shtaa = Sp(l + O paa) (3.5a)
with
Sy = exp[—(4KM/3ﬁ,a)M)2]
oTab = —6‘ (4KT/3th)2(W(:} + W{:)) Tozp = _6’(4K2/3ﬁw2)2(w,(;) -+ Wg“)
Orag = —6’(4KT/3ﬁwT)2(Wg43 + Wg”) Osg = —6'(4K2/3fiw2)2(Wf;‘) + Wg’))
(3.50)

In (3.5), the corrections to the overlaps from their cubic counterparts are expressed in
terms of the parameters Wi¥ for well &, where

W(k} = (k) /(4,,0:) } (3.6)

with the numencal values of Afk) and n gwen in table 1 of I. Thusj = 4 and 6 is used
for the transverse modes and j = 7 and 9 for the radial modes.
The required states for the T &®t, JT problem are found by taking appropriate

combinations of the cubic states (Dunn 1988, equations (24) and (30)):
[T1t) = Nau(=Ja’; 0 + [b"; 0) + [c"; 0} — [d"; 0))

(3.7
|Azt) = Na(+[a; 0y + 6’5 0) + fc’; 0) + |d’; 0))
with
AN} (1+4Sp) =1 4aNL(1-8p)=1
in the form
IT1xM) = N xp (2[Ty, M) — [T, M) — [Ty, M))
IT1yM) = Nyy (|T 1 M) — [T, M)) (.8)

[T1zM) = Nz (|T 1. M) + [T, M) + IT,. M))
.My = NowlA, M)

where M =T or 2 as appropriate. (|Tyt) and [T, t) are derived from [Ty,t) above by
appropriate cyclic interchanges.) The normalizing constants are given by

ANGU[B+ Sy (1 + Q)] =1 8NZu[3 + Su(1+Qxy)] =1

Nyw = V3Nxy ANGy[L = Syl + Q)] =1
where

(3.9)
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Q= ~HOpao — 30uaa — 8V27y) Qun = Ouw —2V2 vy
QZM = é(UMab + aMad)

with yy = —V2 8'/6 for the radial modes and v, = +V2 8'/12 for the transverse
modes.

However, in C;, symmetry, the states |[;;M) and |T,M) both transform as A,.
They are therefore not orthogonal, so that a further orthogonal pair of states must be
constructed. These states are

ICoM) = po(IT)zM) — T2 M) T, M)y = p,(IT 2 M) + [T, M)) (3.10)
where

21— A)=2pi(1+A)=1

A = (T MM = 28y NopsN oy (= Opgan + @pgaz + 4V2 7).

The states |,y M) and |I';yM) form an E pair and |[, M) and [T, M) are each A, singlets.

A further step must be taken because the A, states are coupled together by the
trigonal parts of the Hamiltonian. Thus the required orthogonal A, eigenstates of 5,
are of the form:

1I'ﬁM) = gin BM |l",,M) + cos GM |l"bM)

. (3.11)
[T, M) = cos 8y [T, M) — sin 8y T, M)

where
tan 268, = —ZH,,;,/(H“ — Hp). (3.12)

In(3.12), H,,, H,, and H,, are the matrix elements of 9, between the A, states labelled
by b and a as indicated by the subscripts. Thus {[;xM), [T yM}, [T, M) and [T'sM) can now
be used as a suitable basis set of states for the trigonal cluster.

4, Calculation of the reduction factors

Jahn-Teller reduction factors arise when the properties of the ground states of a vibronic
system are written in terms of an effective Hamiltonian. Such a procedure is well known
and is invoked so that the ground-state energies and the effect of perturbations may be
obtained from calculations involving the properties of the orbital operator only. Matrix
elements of orbital operators between the ground vibronic states differ from the equiv-
alent matrix elements between the corresponding orbital states by a constant, which is
called ‘the first-order reduction factor’. However, in cases in which inversion levels exist,
such as in T ® t,, off-diagonal elements occur that have no ‘pure orbital’ counterpart.

Inthe calculations to be described here, the so-called second-order reduction factors,
which arise from the coupling to excited vibronic states by the perturbation V, will
be omitted. Such calculations have been the subject of detailed calculations recently
particularly for T @ t, JT systems (Bates and Dunn 1989, O'Brien 1990, Dunn et al 1990,
Polinger et al 1991, Bates et al 1991). Such terms will undoubtedly be present in trigonal
complexes but, to a first approximation, they will be additional to those we derive here
and will not interfere with them.

We consider a T, ion. In the trigonal complex of C;, symmetry, the orbital T, state
splits into an E and an A, state. While A;, A, and E operators are unchanged by the
trigonal perturbation, a T, operator is split into an A, part, which will be written as
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A,(T}), and an E part, to be written as E(T,). Similarly, the trigonal operators derived
from the cubic T, operator are A,{T;} and E(T;). It is necessary to use trigonal axes as
defined in (3.4) for the operators. For example, we have (e.g. Bates 1978)

E, = —(/V2)lzly + Lyly) + 302 + ) (4.1)
for the E operators, and for the T, operators we have

AL(T2) = Y385 - 1T + 1))

Eg(T2) = =370y + iIxlz) - V2 (B + ).

For T; operators, we have I; for A,(T,) and I, !, for E(T,). It should be noted that
difficulties can arise when matrix elements are evaluated between vibronic states that
have no orbital counterpart in devising an appropriate formalism for their display.

4.2)

4.1. The T® e system

As stated above, the reduction factor K§o[Q(P)] for an operator % of symmetry P may
be found by comparing the matrix elements of & within the set of vibronic states of
symmetry I', Q given in (3.4) with the matrix elements of & within the corresponding
pure orbital states. (The superscript ‘e’ is used to label the 1T system discussed here; the
label ‘t’ will be used below for the T & t, system.) For example,

{p1zAz]A, (T,)lp1zA2)
(ZIA(T2)|Z)

Detailed calculations give the following results:
£e[E(E)] = K4,0,[E(B)] = 1
K?AZAZ[A1CT2)] = KEe[A)(T2)] = eEAz[E(TI)] = KEe[A,(T))] (4.4)
= Ka,[E(T,)] = Kge[E(T,)] = Sk.

These results are very similar to those obtained in the regular cluster with the oscillator
overlap Sg for the complex replacing the standard oscillator overlap Sg. Complete
quenching thus occurs in the infinite-coupling limit for six of the reduction factors. The
reduction factors are plotted as a function of (Kg/Awg) in figure 1 with 6’ =0.1. For
comparison, the reduction factor (= Sg) for the regular cluster is also included in the
figure.

Kl [E(T)] = (4.3)

4.2. The T®@ t,system

This situation is much more complicated than the T @ e and regular T ® t, systems as
there are many more independent factors and operatoss to be taken into account, The
calculation proceeds in exactly the same way as that for T & e using the vibronic states
given in (3.8) and (3.11). In order to organize the resuits, the reduction factors will be
grouped according to their regular counterparts, pamely K'(E), K*(T;) and K'(T,).
Details of the calculation and the results are given in the appendix.

The reduction factor K*(E) for the regular cluster is divided into three independent
factors for the complex as given in equations (A1) and (A2). K'(T) also divides into
three, of which there is one labelled as A,(T,), and given in (A4), and two under the
label E(T,) given in (A5). It is necessary to take K'(T5) and {T,|T,| A,) together; there
are four factors labelled by A ,(T,) (equation (A6)) and three by E(T,) (equation (A7)).
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0 0.5 1%
Ky /bt

Fignre 1. The T @ e reduction factors plotted as a function of (Kp/fwg) with ' = 0.1 as
given in (4.4). The reguatar factors K%(E) = 1 and K*(T,) = K°(T1) = Kiz = K5ja, = S
are also shown for comparison purposes.

1.00

0.75

0.50

0.25

20

Ky /My

Figure 2. The E(E) reduction factors for T & t radial modes piotted as a function of (Ko
hawy) with &' = 0.1 as given by (A1} and (A2). The corresponding regular reduction factor
K'(E) is also shown for comparison purposes.

1n the following discussion, coupling to radial t, modes only is discussed in detail.
Results for the transverse modes will have an equivalent form.

4.2.1. Derivatives of K'(E). The three E(E) reduction factors are plotted against the
coupling strength (Ky/Awe) for the radial modes in figure 2 for 8’ = 0.1. For comparison
purposes, K'(E) is also plotted. The figure shows that, in the strong-cs}i_pling limit,
Kie[E(E)] and Kia,m[E(E)] tend to the limit of magnitude V2y, while
Ka o [E(E)] is completely quenched. [These results for the strong coupling limit can
also be derived directly from equations (Al) and (A2) as §,,— 0, b, — ¥VZ vy and
N%y— 1/24 (from (3.9)). Substitution in the formulae reproduces the above results.]
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Figure 3, The A,(T,) and E(T,) reduction factors for the radial modes of the T @ t, trigonal
complex plotted as a function of (KyfAw;) with 8" = 0,1. K'(T,) is also plotted for comparison
purposes.

The non-zero limit for the first two cases can be anticipated as the trigonal field mixes
some E(T,)-type characteristics into the E(E) operators. As cubic T,-type operators are
only partially guenched in the strong-coupling limit, admixtures of them result in a non-
zero limit as observed. When (K;/hwy) tends to zero, the reduction factor
Kty w[E(E)] can be approximated to L(E)y. This is, in turn, consistent with the use of
the first three ground basis states given in (3.8) as approximate eigenstates of the system
provided the coupling to the other excited A, singlet [,M) can be ignored. The two
other reduction factors both tend to unity in this limit.

Inthe limit of ' tending to zero, both I(E),, and K4 s [E(E)] vanish as the coupling
of the trigonal field to the excited singlet state goes to zero, and the reduction factors
Kge[E(E)] and K4, [E(E)] both become equal to K'(E) of the regular cluster where
(e.g. Bates and Dunn 1989) -

K'(E) = 451/(3 + St). (4.5)

4.2.2. Derivatives of K'(T}). The A,(T;) and E(T,) reduction factors for the radial modes
are plotted, together with K'(T)), in figure 3 with ' = 0.1. The graphs show that A,(T,)
and E(T,) are each completely quenched in the very-strong-coupling limit as with K*(T,).
In the weak-coupling limit, L(1}), can be used as an approximate reduction factor
between the E(T,) doublet and A,(T,) singlet for the same reasons as above. Both
KtelA,(T,)] and L(1),tend to unity as the coupling tends to zero.

In the other limiting case when &' tends to zero, 1(1),, and K45 [E(T, )] both tend
to zero as the coupling of the trigonal field to the excited singlet state disappears. Thus
Kte[A2(T )} and K4,y [E(T,)] both tend to K'(T)).

4.2.3. Derivatives of K{(T,). The A,(T,) and E(T,) reduction factors are more com-
plicated as there are more of them. The results for the radiai modes are plotted in figures
4(a) and (b) with 6’ = 0.1 as before together with their cubic counterparts K*(T;) and
{A;|T2|T,}. In the very-strong-coupling limit, the reduction factors have the following
values:
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K*IT,) \
KEAZIM
et
t
050 | Keasp
AT Ty
05|
0 10 2.0
Kyl

Figured. (a) The A (T;) and (b) the E(T;) reduction factors for the radial modesof the T® 1,
trigonal complex plotted as 2 function of ( K/fiw;) with & = 0.1. Their cubic counterparts
of K(T,)and {A;|T,| T\ are also shown. Note thatin (), Kee{E(T,)]is not shown separately
as it cannot be distinguished from the curve for KY(T) with the scale used.

Kie[A((T)] = #(1 — 2VZyq) Koo [A1(T)] = V2 yr

Kl ymaxe[A(T2)] =31 - V2 yq)

Kz A1(T2)] = Kge[E(T2)] = Kkayo[E(T)2)]
Keaxp[E(T2)] = ¥1 + V2 yp).

(4.6)

If the coupling to the excited A, state is neglected and (K /fw,,) tends to zero, the
reduction factors K} a1 A1 (T2)]and K s 0y [E(T2)] canbe approximated by L(T),,
and L(T"),s respectively, These approximate factors, together with Ktg[A(T,)], are
well defined and tend to unity as the coupling strength tends to zero.

In the limit when &' tends to zero, the factor K ,a.m[A1(T,)] tends to zero, while
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the magnitudes of Ky ;)4 () [A2(T2)] and K (a5 [E(T2)] reduce to the vaiue of the
regular element (A,|T, [)TI), which is given by (Bates and Dunn 1989)

(Az|To{Ty) = §[(1 — S1)/(1 + 3S)] 2. (4.7)

The remaining reduction factors involving the doublet E(T,) and the singlet A,(T,)
states tend to the cubic reduction factor K*(T,) where (Bates and Dunn 1989)

K'(Ty) =2(1 + S1)/(3 + S7). (4.8)

5. Discussion and conclusions

This paper has described calculations of the first-order reduction factors that have been
undertaken for a trigonal cluster. It has concentrated on those systems which would be
described as T® e and T &t if the trigonal distortion was removed. The method
adopted has used the symmetry-adapted states given in equations (3.4), (3.8) and (3.10).
These states were derived from the transformed states located in the various minima in
the potential energy surface. The latter were obtained from the original calculations of
Simpson ez a/ (1990) using an initial unitary transformation. The formalism developed
in this model has been shown to be convenient to use. To our knowledge, no other
calculations of these reduction factors exist in the literature which take into account the
trigonal nature of the ion-lattice interaction,

The results for those reduction factors which are derived from the cubic T® e IT
system and shown in figure 1 clearly show that the trigonal perturbation has very little
effect and could be ignored in virtually all calculations. However, some of the reduction
factors for the trigonal complex do differ in some important ways from their cubic
counterparts in T & t, JT systems. Among the most significant is that Ki g [E(E)] and
KEa,m[E(E)] tend to a finite value of V2 y,, in the infinite-coupling limut rather than
the limiting vaiue of zero for the cubic case. In a similar way, ail seven of the trigonal
AL(T,) and E(T,) reduction factors deviate from their cubic infinite-coupling limits by
a multiple of y,, as shown in figures 4(a) and (). In some cases, the deviation is from
the value of § while in other cases the deviation is from zero. In all cases, deviations in
weak coupling (e.g. Kj,/%wy less than unity) between the trigonal and cubic factors as
shown in figures 2—4 are not always reliable as the states are not designed for this region.

The departures of some of the reduction factors from their cubic infinite-coupling
limits is the most significant of the resuits described here. It is important to take this into
account in the modelling of experimental data on real systems, many of which are not
cubic. Thus the identification of the type of the dominant rT coupling should proceed
with care.

We note also that some progress has been made in deriving the reduction factors for
orthorhombic T & (e + t;) JT systems within trigonal complexes. However, the results
are even more complicated than those for T ® t, because of the difficulty of accurately
modelling both split and coupled triplets (T, + T) in a compact form when the coupling
is to two € and one a; modes.

Work is currently in progress to use the theory for complexes derived above to model
all the complexes of Cr in GaAs described in the introduction.
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Appendix. Reduction factors for T ® t,

There are 13 reduction factors, which may be classified under their cubic counterparts.

A.l. Derivatives from the cubic K*(E) reduction factors

There are three independent reduction factors each described by E(E). Within the
vibronic doublet, we have one, namely

te[E(E)} = 32N5u(a 1Sy + by) (A1)
where
ay =1+ 0y, +iV2yy by = —¥VZyy

The other reduction factors are between the doublet and each of the two singlets. They
are

KEA:(«)[E(E)] =, L(E)y — u2/(E)y

(A2)
Kia,w[E(E)]) = usL(E)y + #aI(E) 4
where
Uy =p,cos 8y — p,sinfy o =P, cOS By + p,sin By
#y =pj,cos Gy + p,sin Oy fig =Py cOS By — p,sin By,

The quantities L(E), and [(E), are the component factors associated with
(leM]E3| leM) and (rlxMi Eel rzM). T'hey have the values

L(E)M = 16\/5 NZMNXM(QZSM + bg)

IE)y = 4V2 NXNNM[(3/\/§)YM + 84(Cptad =~ Opaa + é\/i Y i) (A3)
where

2y =1+ HOpap + 30mas) = ¥V2 vy by =VZyy.

A.2. Derivatives from the K*(T,) reduction factors

A.2.1. The Ay(T,) reduction factor. There is one A,(T,) reduction factor which operates
within the E states, namely

Kie[Ay(T )] = 32Nk Sull + 0w ~ 1V2y4]. (A4)
A.2.2. The E(T)) reduction factor. There are two reduction factors of symnmetry E(T))
as there are two A, states. Thus

Keayp[E(TOl = i LUy — 2l (A5)

Kiny [E(T)] = 3 L)y + padl") y
where

L(I") y = 16VZ NxyNzuSull + HOpap +30 1) + $V2 4]

Iy = 8V2Z NxsuNauSul V2 7y + HOmap = Otad)).
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The quantities L{/'),, and I(I'},, are derived from calculating (T';,M|ly|T:zM} and
([ xM |y T, M) respectively, for example.

A.3. Derivatives from the cubic K'(T;) and (T, T;| A,) reduction factors.
A.3.1. The AT} reducton factors. There are four A (T,) reduction factors. They are

RelA(T2)] = 16N%,[Sy(1 + yes + V274) + (1 - 2VZ y,))]
Kin syl A1 (T2)] = uiL(T) g = 201412 ) gy + u3J(T)
Khimang (A (To)] = #3L(T)y + 20u34(T) gy + p3d{(T)y
KiaeoaxplAi(T2)] = o3 L(T) e = papbo (T + (papty — papts (T
where
L(T)p = 8N%dS [l + 2O + 3000a) + FVZ ya] + (1 +3V2 7,0}
KT)p = ANz Napsl(1 = $V2 yyy) = Syyl1 + MO + Orad) + $V2 701}
J(T)p = =2N34[V2 i + Sse(Osas ~ Optad — V2 Y1)

L{T)y, KNT)y and XT)y are calculated from ([ MIA(T)II M),
{0,zM| A;(T5)|T ;M) and (T,M| A, (T3) | T, M) respectively.

(AS6)

A.3.2. The E(T;) reducrion factors. There are three factors, as follows:
KEe[E(T2)] = 16N Syl + 0 pp — $VZ yu) + (1 + V204
Kiasey[E(T2)) = o L(T N pg — p2d(T )y

Kiaxm[E(TY) = s L(T )y + pal(T')y.
(A7)

The quantities L(T'), and I(T’),, are obtained, for example, from evaluating
M BT, M) and (TyyM |Eo(T,) | T3M) respectively, where Eo(T),) is given in
equation (4.2). The results are

(T3 = 8VZ (NxuN oy Ml = $(0ptap ~ 3001aa) + IV2 7 ]Su + (1 + 5VZ yu)}

| KTy = =8VZ (NxuNae{~(1 + HOptap + Ontag) = $VZ yulSu + (1 + V2 vy}
(A8)
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