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First-order Jahn-Teller reduction factors for trigonal 
complexes 

J A L Simpson?, C A  Bates and J L Dunn 
Physics Department, The University, Nottingham NG7 ZRD, UK 

Received 25 February 1991 

Abstract. First-order Jahn-Teller reduction factors for strongly coupled orbital triplet sys- 
tems within trigonal complexes are evaluated. The calculations are based on the model 
recently proposed by the present authors for such a complex. Detailed results are presented 
forthereductionfactonwhichcorrespondt~thoseofT@eandT~t~Jahn-TeUer systems 
in cubic symmetry. It is found that the new factors corresponding to T @  e are virtually 
unchanged from their cubic counterparts. However, some of the factors derived from the 
T @ t,system are changed significantly. The most important change would appear to be that 
snme of the factors remain finite in the strong-coupling limit in contrast to the cubic sptem 
where the corresponding factors are completely quenched 

1. Introduction 

There are many examples known where, on doping a crystal intentionally with impurity 
ions, the ions do not enter the lattice as simple, isolated, substitutional ions but instead 
enter the lattice as part of a complex. This situation occurs frequently in the 111-V 
semiconductors such as GaAs, GaF’ and InP (e.g. Clerjaud 1985). In many such cases, 
the ion in the complex is very strongly coupled to the vibrations of its surroundings, 
which therefore complicates any interpretation of the properties of that system. There 
are also numerous examples of other physical systems (e.g. spinels, A1203) and mol- 
ecular crystals containing ions in trigonally distorted environments and complexes. 

The original motivation for this detailed study of trigonal complexes arose from the 
need to understand the very complicated optical absorption and photoluminescence 
spectra observed in various chromium-doped GaAs samples. (This system was tech- 
nologically important because of the semi-insulatingcharacterof thesamples produced.) 
Lack of adequate models caused much confusion in understanding these spectra. The 
first complex to be clearly identified in this system was Cr”-VA, (Fujiwara et af 1982, 
Skolnick eral1982), in which one of the As sites surrounding the CPt ion is vacant. One 
ofthecurrent authors was involvedin the detailed modellingofthiscomplex (e.g. Barrau 
et a1 1983, Austen et af 1984, Bates and Brugel 1987, Brugel and Bates 1987), but by 
treating the vacancy as producing a static trigonal field at the C s t  site. Also, Deveaud 
et af (1984) suggested that @-Te complexes were formed in GaAs co-doped with Cr 
and Te. The same complex was also studied by Fujiwara et af (1985), and modelling was 
undertaken by Simpson et af (1988). Again, the effect of the Te ion substituting for one 
of the As ligands was treated by a static trigonal field. Other complexes of Cr in GaAs 
were subsequently observed, namely Cr-V,- (Fujiwara et a1 1986a, b, c) and C r S e  
(Fujiwara etaZ1986a). 
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More recently, there is interest in the recharging mechanisms involving titanium 
(Tebbal er all990) and nickel ions (Erramli etaf 1991) in various 111-V semiconductors. 
In many of these systems, it is thought that complexes between the magnetic impurity 
ion and a nonmagnetic impurity are formed and could have an important role to play 
on fixing the equilibrium arrangement in the crystal. Again, it is necessary to have an 
appropriate model on which these ideas can be tested. 

In a recent paper, Simpson et a1 (1990, to be referred to as I) set up and described a 
model that is generally applicable to strongly coupled orbital triplet ions forming part 
of a trigonal complex. (By making appropriate changes, the model could be modfied 
readily to apply to octahedral systems as well.) The model in 1 was based on an initial 
unitary hansformation followed by an energy minimization procedure described pre- 
viously for cubic symmetry by Bates et al (1987), Dunn (1988) and Dunn and Bates 
(1989). From the model, expressionswere obtained for the coordinatesof the 13 minima 
in the potential energy surface, the corresponding eigenstates and their energies. The 
relationship with the minima for a regular tetrahedron was also discussed. 

In order to model the magnetic and optical properties of real complexes, it is 
necessary to derive an accurate effective Hamiltonian. This means that the associated 
reduction factors must be calculated. The aim of this paper is to use the model described 
in I and derive expressions for the first-order reduction factors associated with those 
seven wells (of tetragonal and trigonal symmetry) which would be associated with the 
T @ e andT @ t, Jahn-Teller (IT) systems if the symmetry were increased to cubic. The 
e modes Q, and Q, of the complex are the same as in the regular tetrahedron. Two types 
of 'cubic' t2 modes are considered, namely those describing radial displacements (e4, 
Q5, Q6) and those producing transverse displacements (Q,,  Q,. Q9). The two types of 
t2 modes will be considered one at a time. As the actual symmetry is trigonal, it is 
necessary to define several reduction factors. The orbital statesT, and T2each split into 
two in trigonal symmetry, namely (A2 + E) and (A, + E) respectively, while the t2 
vibrations divide into those of A, and those of E symmetry. Each combination of state 
and mode of vibration has its own reduction factor, which is generally different from 
other factors. Also included are couplings between the split orbital states. 

2. Mathematical background for a tetrahedral complex 

The trigonal complex consists of a central ion surrounded by four ligands i (i = 14), 
one of which (i = 1) is different from the other three in that its charge q ,  = (1 + 6)q 
instead of q and it is at a distance d,  = (1 + u)d from the origin instead of d .  Thus its 
different charge and/or relative position generates a trigonal distortion in the complex, 
which is used to define the [I  111 axis for the cluster. Neglecting quadratic couplings 
(which are relatively unimportant except for 'cubic' T 63 (e + tz) JT systems, which are 
not being considered here), the total Hamiltonian for an orbital triplet ion coupled to 
the e and one of the t Z  modes of the cluster is (I, equations (3,1), (3.7), (3.9)) 

X = Xi", + X ~ b  + AXinl (2.1) 
where 

Xi", = K;rj(bf + b,) j = 8, E ; 4 , 5 , 6  or j = 8,  E ; 7 , 8 , 9  
(2.2) I 

= ho;(bt b; + 1) AXinl = f6 K,Ri(bf + b,). 
i i 

In the above, Xint is the Hamiltonian for the linear ion-lattice coupling for the regular 
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tetrahedral cluster, AXi,, is the additional contribution to the ion-lattice coupling from 
the trigonal asymmetry and is the Hamiltonian for the vibrations of the cluster. All 
Hamiltonians are written in terms of second quantized operators; for the orbitals these 
operators are c,, c.' (n = 1-3) and for the oscillations they are written as bi, b:. Com- 
binations ri of the orbital operators are used in the above such that re, etc., is given by 

The Ri operators are trigonal combinations of the ';. as given in I ,  equation (3.15). The 
Ki are scaled coupling constants such that: 

while the oscillator frequencies miare such that we = w, = wE, o4 = 
w, = a*= w 9  = w2. 

re = c:cl + c:c2 - 2 4 ~ 3 .  (2.3) 

Ke = K ,  = K, K 4  = K ,  = K6 = K+ K7 K8 = Ks = Kz (2.4) 
= w6 = wT and 

The procedure adopted in I was to apply a unitary transformation (equation (4.1)) 
U' = exp( i a; p j )  (2.5) 

to the Hamiltonian %e, where a; are free parameters for the trigonal cluster and P; are 
the momenta conjugate to Q;. The transformation has the effect of displacing the origin 
of each of the oscillators by -a;h. For strong coupling, the largest part %, of the 
transformed Hamiltonian % does not contain any coupling to excited phonon states. 
The a; were obtained by minimizing %, with respect to the a;. This is equivalent to 
obtaining the positions of the minima in the lower potential sheet. A set of coupled 
equationswasobtained, which were expressed in termsof aset of new parameterspithat 
are directly related to the a;. After a considerable amount of algebra, the coordinates of 
the 13 minima (k = 1-13) were found and expressed in the form: 

where V, derived directly from K,. In (2.6), 6' (= S - 40) represents the total con- 
tribution from the trigonal distortion. The values of nj') and ky) are given in table 1 of 
I for both cases of a T ion coupled to one e mode and one t2 mode (either of the radial 
or transverse type). 

From the analysis, the energies and vibronic ground states in the 13 minima were 
obtained assuming that the frequencies ai are comparable in magnitude and that the 
relative values of the coupling constants KE and either KT or K, could be chosen to 
produce the required symmetry-type solutions. The results were given in table 20f I and 
refined in section 6 of I. For our present purposes, we will consider only those solutions 
which would reproduce either tetragonal minima and trigonal minima if the trigonal 
distortionwas removed. For convenience, those states and their energies are reproduced 
in table 1. 

In the analysis, only the largest part %, of the transformed Hamiltonian has been 
included. It is known that the remaining terms are responsible for the anisotropy. This 
arisesfromthecouplingof thevibronicgroundstatesin theminimato theexcitedorbital 
and phonon states in the same weU. This problem has been discussed by a number of 
authors (e.g. Moffitt and Thorson 1957, Bersuker and Polinger 1989, Dunn and Bates 
1989) but will be ignored here because it is of secondary importance when compared to 
the trigonal perturbation. 

3. The untransformed basis and symmetry-adapted states 

The vibronic ground state within one well consists of an orbital part multiplied by an 
oscillator part with all oscillators having zero excitations. As they stand, these states are 

a; (o' = (vi/hpwi)(njk) + $S'kjk') (2.6) 
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Table 1. The corrections to the energies of the wells for the impurity cluster and the 
corresponding orbital and ground vibronic states for the original cluster. (After Simpson et 
a1 1989.) 

in a transformed basis as they are centred on the well in question. As all wells must be 
considered simultaneously, it is necessary to have a common basis for them all. This is 
achieved by multiplying each vibronic state in each well by the unitary transformation 
after substitution of the relevant value of a;. Thus the untransformed state lXbk)'; 0) is 
derived from the transformed state lXLk); 0) by the relation 

lXbk)';O) = U ;  lXbk);O) 

U ;  = exp(ZC;)(b, - b;)) C;" = - ( & f i o ~ ~ ) ~ f l u ~ ~ ) ' .  (3.1) 

Such states are good eigenstates of the system in the infinite-coupling limit. However, 
the states in the trigonal minima are not good eigenstates in finite coupling, as the 
oscillator parts of states in different wells are no longer orthogonal. For these and other 
reasons, it is necessary to calculate the oscillator overlaps. 

with 

S" = <Ol( Lq-4 U; IO) 

= {Oj e x p ( 2  Dy"(6; - 6,))IO) = exp( -12 (O:')2) (3.2) 
I I 

with 
DIk" = C(b) - Cjg * 

I I 

for the wells k and 1 using the same procedures as those used in Bates et a1 (1987). 
For T '8 e systems, there is one overlap needed for k # I ,  namely 

sg = s E ( 1  + f f E )  (3.3) 
with 

ae = -36'(KE/fLWE)2 SE = eXp[-6(K~/fioJ~)']. 
The states Ix'; 0) (= Uxlx; O)), ly'; 0)  and 12'; 0) are good eigenstates for all coupling 
strengths for the trigonal complex as well as the regular cluster where x ,  y and z 
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form the orbital basis states written with 1 = 1. However, it is necessary to take linear 
combinations of these states, which are more appropriate for trigonal symmetry. This is 
very straightforward and the required states are 

I ~ L x E ) =  ( ~ / % X ~ I Z ' ; O ) -  Ix';O)- I Y ' ; ~ ) )  

Iq~zAz) = ( l / V $ ( l x f ;  0) + ly'; 0) + 12'; 0)). 

('PIYE) = U / ' h b ' ; O )  - I Y ' ; ~ ) )  (3.4) 

The labels in the kets on the left give the symmetry of that state; OZ is the axis of 
quantization along [11 I] with OY along [110). 

ForTB t,systems, therearetwooverlapsneededforeachoftheradial(M = T)and 
transverse modes (M = 2) on account of the differences between the wells introduced by 
the trigonal perturbation. Thus we write the overlaps between the oscillatorsin the pairs 
of wells (a, b), (a ,  c) and (b ,  c) as Sbab (see table 1 for definitions of a, b,  etc.) and 
between the pairs of wells (a,  d), (b, d) and (c, d) as Shad, where 

S h b  S M ( 1  + GMob)  s h a d  = sMM(1 + UMad)  (3.5a) 
with 
S, = e~p[-(4K~/3hw,+,)~] 

OTob - - -6'(4KT/3hw,)2(Wy + W(4)) 6 Ubb = -6'(4Kz/3hw2)2(W:4) + W'O)) 9 

OTod - - -6'(4KT/3nwT)2(Wk") + W")) 6 Ubd = -6'(4K2/3hUl2)'(WY' + w")). 9 

(3.5b) 
In (3.9, the corrections to the overlaps from their cubic counterparts are expressed in 
terms of the parameters Wjk) for well k ,  where 

WI" = Lck)/(4nck)) (3.6) 
with the numerical values of i:) and n, given in table 1 of I. Thus j = 4 and 6 is used 
for the transverse modes and j = 7 and 9 for the radial modes. 

The required states for the T B t2 JT problem are found by taking appropriate 
combinations of the cubic states (Dunn 1988, equations (24) and (30)): 

(k) . I 

ITl,t) = &,(-la'; 0) + 16'; 0) + IC'; 0) - Id'; 0)) 
(3.7) 

IAzt) = NAt(+la'; 0) + lb'; 0) + IC'; 0) + Id'; 0)) 
with 

in the form 
4N+,(1 + &) = 1 4Ni,(1 - ST) = 1 

IrwW = Nxd21T1,W - IT1,W - IT&) 

I ~ I Y M )  = NYM(ITUM) - ITlyM)) 

lr1.M = NzM(ITI,M) + IT,,W + IT&?) 

IrM = &&42M) 

(3 4 

where M = T or 2 as appropriate. ( ITkt) and ITl$) are derived from ITl,t) above by 
appropriate cyclic interchanges.) The normalizing constants are given by 
4 @ ~ [ 3  + S,(l + QzM)]  1 8 G d 3  + SM(1 + Q X d I  = 1 

(3.9) 
NYM = v'~N,,.~ 4N&[1 - SM(1 + QZM)] = 1 
where 
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QZM = -t('Mrtb - 3oMod - 8~ Y M )  

%rW = k(oMnb + oMod) 

BXM = %lob - 2 f i  Y M  

with yM = -fi S'/6 for the radial modes and yw = +fi 6'/12 for the transverse 
modes. 

both transform as AZ. 
They are therefore not orthogonal, so that a further orthogonal pair of states must be 
constructed. These states are 

1P.M =P.(lrIzM) - I F Z M ) )  I r b M ) = P b ( l r L Z M ) +  l r Z M ) )  (3.10) 

where 

However, in C3" symmetry, the states ITlzM) and 

2p:(1 - A) = 2p;(1 + A )  = 1 

A (r!zMlrzM) = DMNzMNzM(-n'wb + @Mad f 4fiy.W). 

The states ITlxM) and lrlyM) form an E pair and 1T.M) and ITbM) are each A, singlets. 
A further step must he taken because the AZ states are coupled together by the 

trigonal parts of the Hamiltonian. Thus the required orthogonal A2 eigenstates of a%., 
are of the form: 

(3.11) 

where 

tan 2 8 ,  = -2Hcb/(Hoa - Hbb). (3.12) 

In (3.12),  H,,, Hbb and Hob are the matrixelementsofa%, between the AZstateslabeUed 
by b and a as indicated by the subscripts. Thus (TlxM), ITlyM), IrJ4) and Ir&) can now 
be used as a suitable basis set of states for the trigonal cluster. 

4. Calculation of the reduction factors 

Jahn-Teller reduction factors arise when the properties of the ground states of a vibronic 
system are written in terms of an effective Hamiltonian. Such a procedure is well known 
and is invoked so that the ground-state energies and the effect of perturbations may be 
obtained from calculations involving the properties of the orbital operator only. Matrix 
elements of orbital operators between the ground vibronic states differ from the equiv- 
alent matrix elements between the corresponding orbital states by a constant, which is 
called 'the first-order reduction factor'. However, in cases in which inversion levelsexist, 
such as in T @ t2, off-diagonal elements occur that have no 'pure orbital' counterpart. 

In thecalculationsto be described here, theso-calledsecond-order reductionfactors, 
which arise from the coupling to excited vibronic states by the perturbation V, will 
be omitted. Such calculations have been the subject of detailed calculations recently 
particularly for T €3 tz IT systems (Bates and Dunn 1989, OBrien 1990, Dum eta1 1990, 
Polinger et nl1991, Bates et all991). Such terms will undoubtedly be present in trigonal 
complexes but, to afirst approximation, they will be additional to those we derive here 
and will not interfere with them. 

We consider a TI ion. In the trigonal complex of C3" symmetry, the orbital T I  state 
splits into an E and an A, state. While A,, Az and E operators are unchanged by the 
trigonal perturbation, a T, operator is split into an AZ part, which will be written as 
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Az(T,), and an E part, to be written as E(Tl). Similarly, the trigonal operators derived 
from the cubic Tz operator are AI(TZ) and E(T,). It is necessary to use trigonal axes as 
defined in (3.4) for the operators. For example, we have (e.g. Bates 1978) 

E, = -(l/d2)(lZlx + ixlz)  + $(e f E )  ( 4 4  
for the E operators, and for the T, operators we have 

For Tt operators, we have I z  for A,(T,) and lx, iv for E(T,). It should be noted that 
difficulties can arise when matrix elements are evaluated between vibronic states that 
have no orbital counterpart in devising an appropriate formalism for their display. 

4.1. The T @ e system 
As stated above, the reduction factor KFQ[Q(P)] for an operator 9 of symmetry P may 
be found by comparing the matrix elements of 9 within the set of vibronic states of 
symmetry r, Q given in (3.4) with the matrix elements of  9 within the corresponding 
pure orbital states. (The superscript ‘e’ is used to label the IT system discussed here; the 
label ‘t’ will be used below for the T @ tz system.) For example, 

Detailed calculations give the following results: 

KSEE[E(E)I = KeA2~2[E(E)I = 1 

K~A~AZ[A~(TZ)I = K&IAi(Tz)I = K;A*[E(TI)] = Kb[A2(Ti)] (4.4) 

= K~A~[E(TZ)]  = K~E[E(T~)I = Sk. 

These results are very similar to those obtained in the regular cluster with the oscillator 
overlap Sg for the complex replacing the standard oscillator overlap SE. Complete 
quenching thus occurs in the infinite-coupling limit for six of the reduction factors. The 
reduction factors are plotted as a function of (KE/hwE) in figure 1 with 6‘ = 0.1. For 
comparison, the reduction factor (= SE) for the regular cluster is also included in the 
figure. 

4.2. The T @ t2 system 
This situation is much more complicated than the T @ e and regular T @ t2 systems as 
there are many more independent factors and operators to be taken into account. The 
calculation proceeds in exactly the same way as that for T €3 e using the vibronic states 
given in (3.8) and (3.11). In order to organize the results, the reduction factors will be 
grouped according to their regular counterparts, namely P(E),  R(Tl) and P(T2). 
Details of the calculation and the results are given in the appendix. 

The reduction factor P(E) for the regular cluster is divided into three independent 
factors for the complex as given in equations (AI) and (A2). P(Tl) also divides into 
three, of which there is one labelled as A,(Tl), and given in (A4), and two under the 
label EOl) given in (A5). It is necessary to take P(Tz) and (TI ITzIAz) together; there 
are four factorslabelled by Ai(T2) (equation (A6)) and three by E(T,) (equation (A7)). 
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I 

Figure 1. The T @ e  reduction factors plotted as a function of (KJfiw,) with 6' = 0.1 as 
given in (4.4). The regular factors F ( E )  = 1 and Ke(T,) = K'(T,) = K& = K i t h 2  =SE 
&e also shown for comparison purposes. 

1.00 

0.75 

0.50 

0.25 

0 

&e also shown for comparison purposes. 

1.00 

0.75 

0.50 

0.25 

0 

K ,  mu, 
Figure 2. The E(E) reduction factors for T @ tz radial modes plotled as a function of ( K d  
A y )  with 6' = 0.1 as given by (Al) and (AZ). me corresponding regular reduction factor 
K(E) is also shown for comparison purposes. 

In the fo!lowing discussion, coupling to radial t2 modes only is discussed in detail. 
Results for the transverse modes will have an equivalent form. 

4.2.1. Deriuatiues ofZC(E). The three E(E) reduction factors are plotted against the 
coupling strength (KT/fiwT) for theradialmodesinfigureZfor6' = 0.1. Forcomparison 
purposes, F(E)  is also plotted. The figure shows that, in the strong-cou ling limit, 

K:,,(,,[E(E)] is completely quenched. [These results for the strong coupling limit can 
also be derived directly from equations (Al) and (AZ) as SDI+ 0, b ,  + i l ~  yH and 
N$,+ 1/24 (from (3.9)). Substitution in the formulae reproduces the above results.] 

KbE[E(E)] and K&a[E(E)] tend to the limit of magnitude P Z y ,  while 
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K, /hw,  

Figure 3. The A2(T,) and E(TI) reduction factors for the radial modes of the T@ t2 trigonal 
complex plottedasa function of(Kdfiy)with 6’ = 0.1. R(T,)  is alsoplottedforcomparson 
purposes. 

The non-zero limit for the first two cases can be anticipated as the trigonal field mixes 
someE(Tz)-type characteristics into the E(E) operators. AscubicT,-type operators are 
only partially quenched in the strong-coupling limit, admixtures of them result in a non- 
zero limit as observed. When (KT/hwT) tends to zero, the reduction factor 
K&u)[E(E)] can be approximated to L(E),. This is, in turn, consistent with the use of 
the first three ground basis statesgiven in (3.8) as approximate eigenstates of the system 
provided the coupling to the other excited A, singlet ITzM) can be ignored. The two 
other reduction factors both tend to unity in this limit. 

IntbelimitofS’tendingtozero,bothI(E),and K~,,(p)[E(E)]vanishasthewupling 
of the trigonal field to the excited singlet state goes to zero, and the reduction factors 
K&[E(E)] and K&n)[E(E)] both become equal to F(E)  of the regular cluster where 
(e.g. Bates and Dunn 1989) 

K’(E) = 4&/(3 + ST). (4.5) 

4.2.2. DeriuutiuesoflC(T,). TheAz(T1) and E(TJ reduction factorsfor the radialmodes 
areplotted, togetherwithF(TI),infigure3with6’ = 0.1. ThegraphsshowthatA,(T,) 
andE(T1) are eachcompletelyquenchedin thevery-strongcoupling limit aswithlC(T,). 
In the weak-coupling limit, L(l), can be used as an approximate reduction factor 
between the E(T,) doublet and A2(Tt) singlet for the same reasons as above. Both 
KkEIAZ(T1)] and L(1), tend to unity as the coupling tends to zero. 

In the other limiting case when 6’ tends to zero, 1(1), and Kh2(s)[E(TI)] both tend 
to zero as the coupling of the trigonal field to the excited singlet state disappears. Thus 
&[AZ(TI)] and K&(w)[E(TI)] both tend to F(T,). 

4.2.3. Derivatives of F(T2). The A,(T,) and E(TJ reduction factors are more com- 
plicated as there are more of them. The results for the radial modes are plotted in figures 
4(a) and (b) with S’ = 0.1 as before together with their cubic counterparts F(T,) and 
(Az1T21T,). In the very-strongcoupling limit, the reduction factors have the following 
values: 
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iao 

0.7s 

0.50 

0.25 

0 

0.75 ''I- I b l  

0 1.0 2.0 
K,/hUT 

Figurr4. (a) The A,(TJ and(b) the E(TJ reduction factorsfor the radial modesof theT@ I+ 
trigonal complex planed as a function of (Kdfror)  with 6' = 0.1. Their cubic counterparts 
ofC(T,) and (A,IT,\T,)arealso shown.Note that in (b) ,  KEE{E(T3)]is notshownseparately 
as i t  cannot be distinguished from the curve for If(T2) with the scale used. 

K~E[AI(Tz)I = Z ~ Y T )  Kid(o)~~(e)[Ai(Tz)1 = ifi YT 
K ! 4 2 ~ ) ~ Z ( @ ) [ A ~ ( T ~ ) l  = - Yr) 
FAdm)A~OIA1(TZ)l = K~E[E(TI)I = Kh2(e)[E(T)?)1 

(4.6) 

= K',,(,q)[E(T,)] = K 1  + ifi UT). 

If the coupling to the excited A2 state is neglected and (KM/fio,) tends to zero, the 
reduction factors KX2(e)A,(,(A, (T,)] andKkA2(,[E(Tz)] can be approximated by L(T), 
and L(T'), respectively. These approximate factors, together with KL[A1(T2)J, are 
well defined and tend to unity as the coupling strength tends to zero. 

In thelimit when 6' tends tozero, the factor Kk2(w)A2(e)[AI(TZ)] tends tozero, while 
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the magnitudes of KX2@ A,(,)[A,(T,)J and K~z~m)Az~al[E(Tz)] reduce to the value of the 
regular element (A2(T2/TL), which is given by (Bates and Dunn 1989) 

The remaining reduction factors involving the doublet E(T,) and the singlet A2(T1) 
states tend to the cubic reduction factor C(TJ where (Bates and Dunn 1989) 

KIF2) = 2(1 + ST)/(3 + ST). (4.8) 

5. Discussion and conclusions 

This paper has described calculations of the first-order reduction factors that have been 
undertaken for a trigonal cluster. It has concentrated on those systems which would be 
described as T@ e and TC3 t2 if the trigonal distortion was removed. The method 
adoptedhasused thesymmetry-adaptedstatesgiveninequations(3.4), (3.8) and(3.10). 
These states were derived from the transformed states located in the various minima in 
the potential energy surface. The latter were obtained from the original calculations of 
Simpson et a1 (1990) using an initial unitary transformation. The formalism developed 
in this model bas been shown to be convenient to use. To our knowledge, no other 
calculations of these reduction factors exist in the literature which take into account the 
trigonal nature of the ion-lattice interaction. 

The results for those reduction factors which are derived from the cubic T C3 e J? 
system and shown in figure 1 clearly show that the trigonal perturbation has very little 
effect and could be ignored in virtually all calculations. However, some of the reduction 
factors for the trigonal complex do differ in some important ways from their cubic 
counterparts in T 8 tZ JT systems. A m 0 7  the most significant is that K& [E(E)] and 
KkA,m[E(E)] tend to a finite value of 2 yM in the infinite-coupling limit rather than 
the limiting value of zero for the cubic case. In a similar way, all seven of the trigonal 
A1(T2) and E(Tz) reduction factors deviate from their cubic infinite-coupling limits by 
a multiple of yM as shown in figures 4(a) and (6). In some cases, the deviation is from 
the value of 8 while in other cases the deviation is from zero. In all cases, deviations in 
weak coupling (e.g. KM/hioM less than unity) between the trigonal and cubic factors as 
shown in figures 2-4 are not always reliable as the states are not designed for this region. 

The departures of some of the reduction factors from their cubic infinite-coupling 
limits is the most significant of the results described here. It is important to take this into 
account in the modelling of experimental data on real systems, many of which are not 
cubic. Thus the identification of the type of the dominant J? coupling should proceed 
with care. 

We note also that same progress has been made in deriving the reduction factors for 
orthorhombic T @3 (e + tz) IT systems within trigonal complexes. However, the results 
are even more complicated than those for T C3 t, because of the difficulty of accurately 
modelling both split and coupled triplets (TI + T3) in a compact form when the coupling 
is to two e and one al  modes. 

Work is currently in progress to use the theory for complexes derived above to model 
all the complexes of Cr in GaAs described in the introduction. 
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Appendix. Reduction factors for T 63 

There are 13 reduction factors, which may be classified under their cubic counterparts. 

A.1. Derivatives from the cubic F(E) reduction factors 
There are three independent reduction factors each described by E(€). Within the 
vibronicdoublet, we have one, namely 

KLE[E(E)I= ~ ~ N $ M ( ~ I S M  + b i )  (’41) 
where 

a ,  = 1 + uMob t $ a y v ,  b ,  = - # a y , , .  

The other reduction factors are between the doublet and each of the two singlets. They 
are 

(A2) 
KL,,(,)IE(E)I = FIL(E)M - @21(E)M 

& . , ~ B ) [ E ( E ) ~ =  P~L(E)M + ! d ( E ) M  

where 

pI = p,, cos OM -Ph sin OM 

p3 = p a  cos OM + p. sin O M  

p2 =p.cosOM +pbsinOM 

p4 = Pb COS O M  - p. sin 9,. 
The quantities L(E)M and I ( € ) ,  are the component factors associated with 
(TlZMIE,IrlxM) and (TlxMlE,II‘2M). They have the values 

U E ) M  16aNZMNXM(aZsM + b2) 
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